assessing the impact of input variables preprocessing into support vector machine through gamma test method for suspended sediment volume prediction

نویسندگان

الهام کاکائی لفدانی

دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران علیرضا مقدم نیا

دانشیار گروه احیای مناطق خشک و کوهستانی، پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران، کرج، ایران آزاده احمدی

استادیار دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان، اصفهان، ایران حیدر ابراهیمی

دانشجوی دکتری علوم و مهندسی آبخیزداری، گروه آبخیزداری، دانشگاه کاشان، کاشان، ایران

چکیده

this study aimed to examine the influence of pre-processing input variables by gamma test on performance of support vector machine in order to predict the suspended sediment amount of doiraj river, located in ilam province from 1994-2004. the flow discharge and rainfall were considered as the input variables and sediment discharge as the output model. also, the duration of the model training period was determined through gt. thereafter, in order to carry out the influence of pre-processing input variables on performance of model, the suspended sediment was predicted using svm model while no pre-processing has been done on its input variables and the results were compared to each other. results show the performance of the gt-svm model in the test phase with minimum rmse was equal to 0.96 (ton/day) and the maximum coefficient of r2 was equal to 0.98 between the predicted and actual values, was better than svm model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting

Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...

متن کامل

Application of genetic algorithm (GA) to select input variables in support vector machine (SVM) for analyzing the occurrence of roach, Rutilus rutilus, in streams

Support vector machine (SVM) was used to analyze the occurrence of roach in Flemish stream basins (Belgium). Several habitat and physico?chemical variables were used as inputs for the model development. The biotic variable merely consisted of abundance data which was used for predicting presence/absence of roach. Genetic algorithm (GA) was combined with SVM in order to select the most important...

متن کامل

New support vector machine-based method for microRNA target prediction.

MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with resp...

متن کامل

Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine

Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine

Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...

متن کامل

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023